Factoring Polynomials over Finite Fields Using Differential Equations and Normal Bases

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factoring Polynomials over Finite Fields Using Differential Equations and Normal Bases

The deterministic factorization algorithm for polynomials over finite fields that was recently introduced by the author is based on a new type of linearization of the factorization problem. The main ingredients are differential equations in rational function fields and normal bases of field extensions. For finite fields of characteristic 2, it is known that this algorithm has several advantages...

متن کامل

Smoothness and Factoring Polynomials Over Finite Fields

Let p be a prime number, and F p the nite eld with p elements. Let S(m) be the \smoothness" function that for integers m is deened as the largest prime divisor of m. In this note, we prove the following theorem. Theorem. There is a deterministic algorithm for factoring polynomials over F p , which on poly-nomials over F p of degree n runs in time S(p ? 1) 1=2 (n log p) O(1) under the assumption...

متن کامل

Factoring Dickson polynomials over finite fields

We derive the factorizations of the Dickson polynomials Dn(X, a) and En(X, a), and of the bivariate Dickson polynomials Dn(X, a) − Dn(Y, a), over any finite field. Our proofs are significantly shorter and more elementary than those previously known.

متن کامل

Factoring Polynomials over Special Finite Fields

We exhibit a deterministic algorithm for factoring polynomials in one variable over "nite "elds. It is e$cient only if a positive integer k is known for which ' k (p) is built up from small prime factors; here ' k denotes the kth cyclotomic polynomial, and p is the characteristic of the "eld. In the case k"1, when ' k (p)"p!1, such an algorithm was known, and its analysis required the generaliz...

متن کامل

Factoring Polynomials Over Finite Fields: A Survey

Finding the factorization of a polynomial over a finite field is of interest not only independently but also for many applications in computer algebra, algebraic coding theory, cryptography, and computational number theory. Polynomial factorization over finite fields is used as a subproblem in algorithms for factoring polynomials over the integers (Zassenhaus, 1969; Collins, 1979; Lenstra et al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1994

ISSN: 0025-5718

DOI: 10.2307/2153542